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LETTER TO THE EDITOR

Some realizations of the quantum algebra U_(su(2))
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CCAST (World Laboratory), Beijing, People’s Republic of China, and Department of
Physics, Tongji University, Shanghai 200092, People’s Republic of China

Received 23 April 1991, in final form 4 July 1991

Abstract. For the quantum algebra U_(su(2)), a g-analogue of the usual spin coherent
state is constructed. With help of coherent states the g-deformed Dyson and Holstein-
Primakoff realizations of the quantum algebra U, (su(2)) are given. A transformation matrix,
which turns the Dyson mapping onto the Holstein-Primakoft, is presented.

Over the past couple of years a great deal of attention has been paid to the quantum
algebras, especially U,(su(2)) which is a g-deformation of the usual Lie algebra su(2).
The U,(su(2)) is mathematically a special Hopf algebra which was called a
quasitriangular Hopf algebra by Drinfeld [1]. Originally it appeared in studying the
properties of the Yang-Baxter equations which play a crucial role in the exactly solvable
models in statistical mechanics, and so on. Recently, a g-analogue of the Jordan-
Schwinger realization for U, (su(2)) has ‘been carried out by many authors [2-5]. In
this mapping two kinds of g-boson, a] (4;) with i =1, 2, must be introduced. In the
present letter, we will outline a new realization of the quantum algebra U_(su(2))
which is a g-analogue of the usual spin coherent state realization [6-8]. In the new
realization, only a single kind of g-boson is necessary. Although the idea of the single
g-boson realization has occurred in the case of Ug(su(l, 1)) [9-11] our technique is
completely different from those works.
The U,(su(2)) is generated by J., J; satisfying relations

[Jo, Je]=£J, L4+, J-1=[24] (1)

The irreducible representation basis vectors are |jm), and satisfy

Jol jm) = m|jm) (2)

Luljm)=V{jF m][j £ m+1]|jm) 3)
with

[x]=(g"—q7*)/(g—q™") (4)

where g is not a root of unity. In the g-»1 the U,(su(2)) reproduce the usual Lie
algebra su(2).
We now define a non-normalized gq-spin coherent state [6-8]

12)= e Z* L)) (s
where the |jj) is a highest-weight state and satisfy
J i =o0. (6)
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The e,(x) is a g-exponential function ([12] and references therein)
e,(x)=Y x"/[n]L. (N

Using the following identity
[2/1+[2j —-2]+[2j —4]+...+[Zi—n+2]=[n][2j—n+1] (8)

the coherent state (5) can be written as

2)= 3 (25 VTR = nlili.j—n). (5
Here
i = my = VIR IVIGTIAT 2L ©)

In analogy to the usual spin coherent states, there exists a resolution of unity for the
g-spin coherent states (5). The identity operator J can be written as

= f 12)(Z| d,u(2) (10)
where d u(Z) is the g-spin coherent-state measure, and defined by
duui2) =2 (1 2Py a 2P 0 an

Note that the integral over @ is a normal integration but the integration {Z|* is a
g-integration. The g-integration is an inverse operation of the g-differentiation ([12]
and references therein) which is defined as

d X
4 L@ =) 2)
dgx gx—q 'x
Using g-integration by parts, we obtain
n —m _"[n] n— - —m
Ix (1+x) dqxi[q_m——T] "N 1+g7 %) " d
g "[nle’ 4 ""'(n-1]q q"[llq""J N
= + .
1] [m-21 ~ [mony J U674
Since
I (1+g ") "dx=q"/[m—n—-1] (13)
we see that all the ¢'s cancel to leave
n . fpl[m—n-21
J'x (1+x)""d :W (14)

This is a g-analogue of the usual beta function. Making use of (14) we can prove (10).
As a result of the resolution of unity, an arbitrary state vector can be expressed
through its Z-space functional realization

HZ)=(Z|w). (15)
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This leads to the scalar product

(‘.—”l]‘l’z): J ¢1(Z)*¢2(Z_) qu(Z)E (d},(Z)NJ:(Z). (16)
From (15) we immediately have
PO N v ) LI R
and
U Z)=(Z|j =1 (18)

Using (10) we can also obtain the g-spin coherent state realization of an arbitrary
operator O,

|6)="0ly)> $(Z)=0y(Z) (19a)

(Z|o|zy=0(Z| 2. (1956)
From (19j we immediately obtain

Fo=0,  F=ZIY-Z3)  Fo=j-Zs. (20)

From here on, the abbreviated form of the different symbols 8=4/dZ 3, =8/3,Z is
used. We can check that the expression (20) is exact, because

ag+',bjn(z)=v["][2j-”+1] l,t‘jn—l(z) (21a)
F 4 (Z)=V[n+1][2) —n} ¢,a(Z) (21b)
agolﬁjn(z):(j_")lpjn(z)- (21¢)

With respect to the measure {11), we can prove that the ,,(Z) are the orthonormal,
and the operators %o, #. are Hermitian, ($,)" = %, (£.)" = #-.
We now turn the measure (11) onto the g-Bargmann measure

1
dq;.L(Z)Br—E e, (—|1ZP) 4,1z de. (22)

With respect to the new measure we can prove that the orthonormalizated basis vectors
are

X (Z)=Z"/V[n]! (23)
that the operators Z and g, satisfy
(2)"'=4, (24)

and the operators §#, and #., therefore, are not Hermitian. The origin of the non-
Hermitian relations are the non-orthonormality of the ¢;,(Z) in (17). The non-
Hermitian relations, however, are not a fundamental problem and can be restored by
introducing & similarity transformation with an operator K

j():K-lfoK (25a)
F.=K'$.K (25b)
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such that 7 = %, and #1 = #.. Note that, since $, was Hermitian, no change is needed
for it. Thus K can be chosen to commute with $, and will thus be diagonal for the
quantum number n. By requiring that

jL =ji =(K—lo¢+K)+ - K+Z(K—l)+ = K_lf_K
and multiplying from the left by K and from the right by K™, we obtain
F_K*=K?Z (26)

Here we have supposed that the operaior K is Hermitian, K ' = K. Taking matrix
elements between the X, ,,(Z) on the left and X,(Z) on the right, we get

K./ K.=v[2j—n].

Here matrix element K, = K, ,,. Starting with K;=1 leads to

K. =VI2]1//[2/ - nl. 27
Then the matrix elements of $,, $. are readily given by
(Xu( D) Fl X(ZD)=j—n (28a)
(X r(ZNF-[ X, (Z2)) = (Kpir) KX Xt DN Z| XA Z)y = VIn+ 102 — 1] (28b)
(Xl ZNF X (2)) = (X ZNF - X (2. (28¢)
Accordingly have

Fo=j-N (29a)

#.=VIZ—Nls, (298)

F_=ZV[2j-N1. (29¢)
Here N=Za.

Finally we note that (3,Z — ¢Z4,) X, (Z)=q""X,(Z). Since X,(Z) is a complete
set, we have therefore
8,Z—4Z3,=q ". (30)

Both equations (24) and (30) show that we can introduce a set of g-bosons a*, g, and
N # a*a, satisfying relations

[N,a"]l=a' [N, a]=-a (31a)

aa*—qata=q~ "N (318)
such that there are correspondences

Z-sa® 3, a Z3-> N (32)
and

X,(Z)~ (a*)"|oWwIn]! - (33)
where |0) is the g-boson vacuum state. Obviously

4, (Z)=1-0). (34)
Then we can rewrite the operators of (20), (29) as

Fo P =a _ (35a}

S+ 3P =a"[2j-N] (35b)

Fo- I =j-N (35¢)
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and
£ P =V[2j=Nla (36a)
F. - M0 = o* 2/ — N1 (36b)
For FFP=j-N (36¢)

where #6, # and $', #MP are the ¢-Dyson and g-Holstein-Primakoff realiz-
ations of the U_{su(2)) algebras, respectively.

This work was supported by the National Natural Science Foundation of China. The
author would like to thank Professor Ye Jia-Shen for helpful discussions and the
referee for drawing his attention to reference [13].

Note added. The g-analogue of Bargmann space has been treated in great detail by Bracken et al {13].
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