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LE’ITER TO THE EDITOR 

Some realizations of the quantum algebra U,(su(Z)) 

Zurong Yu 
CCAST (World Laboratory), Beijing, People’s Republic of China, and Department of 
Physics, Tongji University, Shanghai 200092, People’s Republic of China 

Received 23 April 1991, in final form 4 July 1991 

Abstract. For the quantum algebra U,(su(2)), a q-analogue of the usual spin coherent 
stale is constructed. With help of coherent states the q-deformed Dyson and Holstein- 
Primakoff realizations oflhe quantum algebra U,(su(Z)) are given. Atransformation matrix, 
which turns the Dyson mapping onto the Holstein-Primakoff, is presented. 

Over the past couple of years a great deal of attention has been paid to the quantum 
algebras, especially U,(su(2)) which is a q-deformation of the usual Lie algebra 4 2 ) .  
The U,(su(2)) is mathematically a special Hopf algebra which was called a 
quasitriangular Hopf algebra by Drinfeld [I]. Originally it appeared in studying the 
properties of the Yang-Baxter equations which play a crucial role in the exactly solvable 
models in statistical mechanics, and so on. Recently, a q-analogue of the Jordan- 
Scbwinger realization for U,(su(2)) has.been carried out by many authors [2-5]. In 
this mapping two kinds of q-boson, at (a , )  with i = 1,2, must be introduced. In the 
present letter, we will outline a new realization of the quantum algebra U,(su(2)) 
which is a q-analogue of the usual spin coherent state realization [6-81. I n  the new 
realization, only a single kind of q-boson is necessary. Although the idea of the single 
q-boson realization has occurred in the case of U,(su(l, 1)) [9-111 our technique is 
completely different from those works. 

The U,(su(2)) is generated by J, ,  Jo satisfying relations 

[Jo,J*I=*J+ [J+ , J-I = [2J01. (1) 

The irreducible representation basis vectors are ljm), and satisfy 

with 

[XI = ( q X  - q-=) / (q  - 4 - 9  (4) 

where q is not a root of unity. In the q+ 1 the U,(su(2)) reproduce the usual Lie 
algebra su(2). 

We now define a non-normalized q-spin coherent state [6-81 

lz)= e,(z*J-)I@) ( 5 )  

where the Ij) is a highest-weight state and satisfy 

J+ljj) = 0. ( 6 )  
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The e,(x) is a q-exponential function ([121 and references therein) 

e,(x) = E  n x"/[n]!. (7) 

Using the following identity 

[Zj]+[Zj -2]+ [Zj -4]+.  . .+[2j- n +21= [n1[2j- n +  11 (8) 
the coherent state ( 5 )  can be written as 

Here 

Ij, j -  n )  =v'[2j - n I ! / [ 2 j ] ! [ n I !  J!ljj). (9) 
In analogy to the usual spin coherent states, there exists a resolution of unity for the 
q-spin coherent states ( 5 ) .  The identity operator I can be written as 

I = IZ)(Zl dql*(Z) (10) 

where d,p(Z) is the q-spin coherent-state measure, and defined by 

Note that the integral over 0 is a normal integration but the integration 1212 is a 
q-integration. The q-integration is an inverse operation of the q-differentiation ([I21 
and references therein) which is defined as 

Using q-integration by parts, we obtain 

Since 

we see that all the q's cancel to leave 

[ n ] ! [ m - n  - 2 ] !  
[ m - l ] !  

x'(1 +x)-'" d,x = 

This is a q-analogue of the usual beta function. Making use of (14) we can prove ( I O ) .  
As a result of the resolution of unity, an arbitrary state vector can be expressed 

through its Z-space functional realization 

= ( Z  I J.). (15)  
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This leads to the scalar product 

From (15) we immediately have 

and 

$jj(z) =(z l j , j )=  1. (18) 

Using (IO) we can also obtain the q-spin coherent state realization of an arbitrary 
operator 0, 

l4)= 0l+ 4W) = W ( Z )  (19a) 

(z~o~z')=o(z~z').  (196) 

From (19) we immediately obtain 

9, =a,, 9- = Z[2j -Za] yo = j - Zd. (20) 

From here on, the abbreviated form of the different symbols a = a/aZ a,, = a/a,Z is 
used. We can check that the expression (20) is exact, because 

9dj.(Z) = ( j -  n)$j.(Z). (21c) 

With respect to the measure ( I I ) ,  we can prove that the $j.(Z) are the orthonormal, 
and the operators dp,,dp, are Hermitian, (dp,)+=20, (9*)'=dp,. 

We now turn the measure (11) onto the q-Bargmann measure 

(22) 
1 

271 
d,@(Z),=-ee,(-IZr) d,lZ)2 d0. 

With respect to the new measure we can prove that the orthonormalizated basis vectors 
are 

X"(Z) = Z'/J[n]! (23) 

that the operators Z and a, satisfy 

(z)+= a, (24) 

and the operators 9o and 9*, therefore, are not Hermitian. The origin of the non- 
Hermitian relations are the non-orthonormality of the $,"(Z) in (17). The non- 
Hermitian relations, however, are not a fundamental problem and can be restored by 
introducing a similarity transformation with an operator K 

j$= K - ' ~ P , K  (25a) 

j *  = K - I , ~ * K  (256) 
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such that 9; = jo and 3; = jT. Note that, since 9, was Hermitian, no change is needed 
for it. Thus K can be chosen to  commute with $, and will thus be diagonal for the 
quantum number n. By requiring that 

j-=j: = ( K - ' $ + K ) +  = K + z ( K - ' ) +  = K - ' ~ _ K  

9 _ K z =  K'Z. (26) 
tiere we have supposed that the operator K is Hermitian, i('= K .  Taking matrix 
elements between the X.+,(Z) on the left and X.(Z) on the right, we get 

and multiplying from the left by K and from the right by K + ,  we obtain 

K . + , / K .  =-. 

K.  = J [ 2 j ] ! / [ 2 j -  n ] ! .  (27) 

( ~ n ( ~ ) l ~ o l ~ ~ ( ~ ) )  =i - n @sa) 

(X.+dZ)lj-lXAZ))= (K.+,/K,)(X.+,(Z)(zlX"(Z))=J[n+ 1 W j -  nl (2x6)  

(X"(Z)I~+lX"+,(Z)) = (x"+, (z ) l~- lx"(z) )* .  (28c)  

Here matrix element K ,  = K.,.. Starting with KO = 1 leads to 

Then the matrix elements o f j o , j *  are readily given by 

Accordingiy have 
j - .  

$ + = m a ,  
j- = z m .  

o - ~ - N  

Here N = ZJ. 

set, we have therefore 
Finally we note that ( a ~ - q Z J , ) X . ( Z ) = q - " X . ( Z ) .  Since X.(Z) is a complete 

(30)  
Both equations (24)  and (30)  show that we can introduce a set of q-bosons a+, a, and 
N # a+a, satisfying relations 

a& - qza, = qN. 

[ N ,  a'] = a+ [ N ,  a ]  = -a  @ l a ) .  

aa+-  qo+a = q - N  (316)  

Z+a+  J , + a  Za-t N (32)  

such that there are correspondences 

and 

x . (z )+  ( a + ) " l o ) m  

where 10) is the q-boson vacuum state. Obviously 

$jj(z) = 1 -* (0). 

T?len we can rewrite the operators of !20!, (29) as 

(33)  

(34)  
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and 

j + + $ L H p J  = a (36a)  

j'-+$'HP'= a m  + (366) 

jo+$Fp)=j- N ( 3 6 ~ )  

where $hD', $iDJ and $hHp', $!"" are the q-Dyson and q-Holstein-Primakoff realiz- 
ations of the UJsu(2)) algebras, respectively. 

This work was supported by the National Natural Science Foundation of China. The 
author would like to thank Professor Ye Jia-Shen for helpful discussions and the 
referee for drawing his attention to reference [13 ] .  

Nofe added. 7he q-analogue of Bargmann space has been treated in great detail by Bracken ef of [I31 
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