Some realization of the quantum algebra $U_{q}(s u(2))$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L1321
(http://iopscience.iop.org/0305-4470/24/23/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:02

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Some realizations of the quantum algebra $\mathbf{U}_{\mathbf{q}}(\mathbf{s u}(2))$

Zurong Yu
CCAST (World Laboratory), Beijing, People's Republic of China, and Department of Physics, Tongji University, Shanghai 200092, People's Republic of China

Received 23 April 1991, in final form 4 July 1991

Abstract

For the quantum algebra $\mathrm{U}_{q}(\mathrm{su}(2))$, a q-analogue of the usual spin coherent state is constructed. With help of coherent states the q-deformed Dyson and HolsteinPrimakoff realizations of the quantum algebra $\mathrm{U}_{q}(\mathrm{su}(2)$) are given. A transformation matrix, which turns the Dyson mapping onto the Holstein-Primakoff, is presented.

Over the past couple of years a great deal of attention has been paid to the quantum algebras, especially $\mathrm{U}_{q}(\mathrm{su}(2))$ which is a q-deformation of the usual Lie algebra su(2). The $U_{q}(s u(2))$ is mathematically a special Hopf algebra which was called a quasitriangular Hopf algebra by Drinfeld [1]. Originally it appeared in studying the properties of the Yang-Baxter equations which play a crucial role in the exactly solvable models in statistical mechanics, and so on. Recently, a q-analogue of the JordanSchwinger realization for $U_{q}(s u(2))$ has been carried out by many authors [2-5]. In this mapping two kinds of q-boson, $a_{i}^{\dagger}\left(a_{i}\right)$ with $i=1,2$, must be introduced. In the present letter, we will outline a new realization of the quantum algebra $\mathrm{U}_{q}(\mathrm{su}(2))$ which is a q-analogue of the usual spin coherent state realization [6-8]. In the new realization, only a single kind of q-boson is necessary. Although the idea of the single q-boson realization has occurred in the case of $U_{q}(s u(1,1))$ [9-11] our technique is completely different from those works.

The $\mathrm{U}_{q}(\mathrm{su}(2))$ is generated by $J_{ \pm}, J_{0}$ satisfying relations

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\left[2 J_{0}\right] . \tag{1}
\end{equation*}
$$

The irreducible representation basis vectors are $|j m\rangle$, and satisfy

$$
\begin{align*}
& J_{0}|j m\rangle=m|j m\rangle \tag{2}\\
& J_{ \pm}|j m\rangle=\sqrt{[j \mp m][j \pm m+1]}|j m\rangle \tag{3}
\end{align*}
$$

with

$$
\begin{equation*}
[x]=\left(q^{x}-q^{-x}\right) /\left(q-q^{-1}\right) \tag{4}
\end{equation*}
$$

where q is not a root of unity. In the $q \rightarrow 1$ the $\mathrm{U}_{q}(\mathrm{su}(2))$ reproduce the usual Lie algebra su(2).

We now define a non-normalized q-spin coherent state [6-8]

$$
\begin{equation*}
|Z\rangle=e_{q}\left(Z^{*} J_{-}\right)|j j\rangle \tag{5}
\end{equation*}
$$

where the $|j j\rangle$ is a highest-weight state and satisfy

$$
\begin{equation*}
J_{+}|j j\rangle=0 . \tag{6}
\end{equation*}
$$

The $e_{q}(x)$ is a q-exponential function ([12] and references therein)

$$
\begin{equation*}
e_{q}(x)=\sum_{n} x^{n} /[n]!. \tag{7}
\end{equation*}
$$

Using the following identity

$$
\begin{equation*}
[2 j]+[2 j-2]+[2 j-4]+\ldots+[2 j-n+2]=[n][2 j-n+1] \tag{8}
\end{equation*}
$$

the coherent state (5) can be written as

$$
|Z\rangle=\sum_{n=0}^{2 j}\left(Z^{*}\right)^{n} \sqrt{[2 j]!/[n]![2 j-n]!}|j, j-n\rangle .
$$

Here

$$
\begin{equation*}
|j, j-n\rangle=\sqrt{[2 j-n]!/[2 j]![n]!} J_{-}^{n}|j j\rangle . \tag{9}
\end{equation*}
$$

In analogy to the usual spin coherent states, there exists a resolution of unity for the q-spin coherent states (5). The identity operator I can be written as

$$
\begin{equation*}
I=\int|Z\rangle\langle Z| \mathrm{d}_{q} \mu(Z) \tag{10}
\end{equation*}
$$

where $\mathrm{d}_{q} \mu(Z)$ is the q-spin coherent-state measure, and defined by

$$
\begin{equation*}
\mathrm{d}_{q} \mu(Z)=\frac{[2 j+1]}{2 \pi}\left(1+|Z|^{2}\right)^{-2 j-2} \mathrm{~d}_{q}\left(|Z|^{2}\right) \mathrm{d} \theta \tag{11}
\end{equation*}
$$

Note that the integral over θ is a normal integration but the integration $|Z|^{2}$ is a q-integration. The q-integration is an inverse operation of the q-differentiation ([12] and references therein) which is defined as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{q} x} f(x)=\frac{f(q x)-f\left(q^{-1} x\right)}{q x-q^{-1} x} . \tag{12}
\end{equation*}
$$

Using q-integration by parts, we obtain

$$
\begin{aligned}
& \int x^{n}(1+x)^{-m} \mathrm{~d}_{q} x=\frac{q^{-n}[n]}{[m-1]} \int x^{n-1}\left(1+q^{-1} x\right)^{-m+1} \mathrm{~d}_{q} x \\
&=\frac{q^{-n}[n] q^{0}}{[m-1]} \frac{q^{-n+1}[n-1] q}{[m-2]} \ldots \frac{q^{-1}[1] q^{n-1}}{[m-n]} \int\left(1+q^{-n} x\right)^{-m+n} \mathrm{~d}_{q} x .
\end{aligned}
$$

Since

$$
\begin{equation*}
\int\left(1+q^{-n} x\right)^{-m+n} \mathrm{~d}_{q} x=q^{n} /[m-n-1] \tag{13}
\end{equation*}
$$

we see that all the q 's cancel to leave

$$
\begin{equation*}
\int x^{n}(1+x)^{-m} \mathrm{~d}_{4} x=\frac{[n]![m-n-2]!}{[m-1]!} . \tag{14}
\end{equation*}
$$

This is a q-analogue of the usual beta function. Making use of (14) we can prove (10).
As a result of the resolution of unity, an arbitrary state vector can be expressed through its Z-space functional realization

$$
\begin{equation*}
\psi(Z)=\langle Z \mid \psi\rangle \tag{15}
\end{equation*}
$$

This leads to the scalar product

$$
\begin{equation*}
\left\langle!_{1} \mid \psi_{2}\right\rangle=\int \psi_{1}(Z)^{*} \psi_{2}(Z) d_{q} \mu(Z) \equiv\left\langle\psi_{1}(Z)\right| \psi_{2}(Z) \tag{16}
\end{equation*}
$$

From (15) we immediately have

$$
\begin{equation*}
\psi_{j n}(Z)=\langle Z \mid j, j-n\rangle=\left(\frac{[2 j]!}{[n]![2 j-n]!}\right)^{1 / 2} Z^{n} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{j j}(Z)=\langle Z \mid j, j\rangle=1 . \tag{18}
\end{equation*}
$$

Using (10) we can also obtain the q-spin coherent state realization of an arbitrary operator O,

$$
\begin{align*}
& |\phi\rangle=O|\psi\rangle \rightarrow \phi(Z)=\mathscr{O} \psi(Z) \tag{19a}\\
& \langle Z| O\left|Z^{\prime}\right\rangle=\mathscr{O}\left\langle Z \mid Z^{\prime}\right\rangle \tag{19b}
\end{align*}
$$

From (19) we immediately obtain

$$
\begin{equation*}
\mathscr{J}_{+}=\partial_{q} \quad \mathscr{J}_{-}=Z[2 j-Z \partial] \quad \mathscr{J}_{0}=j-Z \partial \tag{20}
\end{equation*}
$$

From here on, the abbreviated form of the different symbols $\partial=\partial / \partial Z \quad \partial_{q}=\partial / \partial_{q} Z$ is used. We can check that the expression (20) is exact, because

$$
\begin{align*}
& \mathscr{J}_{+} \psi_{j n}(Z)=\sqrt{[n][2 j-n+1]} \psi_{j n-1}(Z) \tag{21a}\\
& \mathscr{J}_{-} \psi_{j n}(Z)=\sqrt{[n+1][2 j-n]} \psi_{j n+1}(Z) \tag{21b}\\
& \mathscr{f}_{0} \psi_{j n}(Z)=(j-n) \psi_{j n}(Z) . \tag{21c}
\end{align*}
$$

With respect to the measure (11), we can prove that the $\psi_{j n}(Z)$ are the orthonormal, and the operators $\mathscr{I}_{0}, \mathscr{I}_{ \pm}$are Hermitian, $\left(\mathscr{F}_{0}\right)^{+}=\mathscr{F}_{0},\left(\mathscr{I}_{ \pm}\right)^{+}=\mathscr{F}_{7}$.

We now turn the measure (11) onto the q-Bargmann measure

$$
\begin{equation*}
\mathrm{d}_{q} \mu(Z)_{\mathrm{B}}=\frac{1}{2 \pi} e_{q}\left(-|Z|^{2}\right) \mathrm{d}_{q}|Z|^{2} \mathrm{~d} \theta \tag{22}
\end{equation*}
$$

With respect to the new measure we can prove that the orthonormalizated basis vectors are

$$
\begin{equation*}
X_{n}(Z)=Z^{n} / \sqrt{[n]!} \tag{23}
\end{equation*}
$$

that the operators Z and ∂_{q} satisfy

$$
\begin{equation*}
(Z)^{\dagger}=\partial_{q} \tag{24}
\end{equation*}
$$

and the operators \mathscr{F}_{0} and $\mathscr{J}_{ \pm}$, therefore, are not Hermitian. The origin of the nonHermitian relations are the non-orthonormality of the $\psi_{j n}(Z)$ in (17). The nonHermitian relations, however, are not a fundamental problem and can be restored by introducing a similarity transformation with an operator K

$$
\begin{align*}
& \overline{\mathscr{I}}_{0}=K^{-1} \mathscr{I}_{0} K \tag{25a}\\
& \overline{\mathscr{I}}_{ \pm}=K^{-1} \mathscr{J}_{ \pm} K \tag{25b}
\end{align*}
$$

such that $\overline{\mathscr{F}}_{0}^{+}=\overline{\mathscr{F}}_{0}$ and $\overline{\mathscr{F}}_{ \pm}^{+}=\overline{\mathscr{F}}_{\mp}$. Note that, since $\mathscr{\mathscr { L }}_{0}$ was Hermitian, no change is needed for it. Thus K can be chosen to commute with \mathscr{J}_{0} and will thus be diagonal for the quantum number n. By requiring that

$$
\overline{\mathscr{I}}_{-}=\overline{\mathscr{I}}_{+}^{+}=\left(K^{-1} \mathscr{I}_{+} K\right)^{+}=K^{+} Z\left(K^{-1}\right)^{+}=K^{-1} \mathscr{I}_{-} K
$$

and multiplying from the left by K and from the right by K^{+}, we obtain

$$
\begin{equation*}
\mathscr{J}_{-} K^{2}=K^{2} Z . \tag{26}
\end{equation*}
$$

Here we have supposed that the operator K is Hermitian, $K^{+}=K$. Taking matrix elements between the $X_{n+1}(Z)$ on the left and $X_{n}(Z)$ on the right, we get

$$
K_{n+1} / K_{n}=\sqrt{[2 j-n]} .
$$

Here matrix element $K_{n} \equiv K_{n, n}$. Starting with $K_{0}=1$ leads to

$$
\begin{equation*}
K_{n}=\sqrt{[2 j]!/[2 j-n]!} . \tag{27}
\end{equation*}
$$

Then the matrix elements of $\overline{\mathscr{I}}_{0}, \overline{\mathscr{J}}_{ \pm}$are readily given by

$$
\begin{align*}
& \left\langle X_{n}(Z)\right| \overline{\mathscr{y}}_{0}\left|X_{n}(Z)\right\rangle=j-n \tag{28a}\\
& \left\langle X_{n+1}(Z)\right| \overline{\mathscr{F}}_{-}\left|X_{n}(Z)\right\rangle=\left(K_{n+1} / K_{n}\right)\left\langle X_{n+1}(Z)\right| Z\left|X_{n}(Z)\right\rangle=\sqrt{[n+1][2 j-n]} \tag{28b}\\
& \left\langle X_{n}(Z)\right| \overline{\mathscr{F}}_{+}\left|X_{n+1}(Z)\right\rangle=\left\langle X_{n+1}(Z)\right| \overline{\mathscr{y}}_{-}\left|X_{n}(Z)\right\rangle^{*} \tag{28c}
\end{align*}
$$

Accordingiy have

$$
\begin{align*}
& \overline{\mathscr{J}}_{0}=j-N \tag{29a}\\
& \overline{\mathscr{J}}_{+}=\sqrt{[2 j-N]} \partial_{q} \tag{29b}\\
& \overline{\mathscr{J}}_{-}=Z \sqrt{[2 j-N]} . \tag{29c}
\end{align*}
$$

Here $N=Z$.
Finally we note that $\left(\partial_{q} Z-q Z \partial_{q}\right) X_{n}(Z)=q^{-n} X_{n}(Z)$. Since $X_{n}(Z)$ is a complete set, we have therefore

$$
\begin{equation*}
\partial_{q} Z-q Z \partial_{q}=q^{-N} . \tag{30}
\end{equation*}
$$

Both equations (24) and (30) show that we can introduce a set of q-bosons a^{+}, a, and $N \neq a^{+} a$, satisfying relations

$$
\begin{align*}
& {\left[N, a^{+}\right]=a^{+} \quad[N, a]=-a} \tag{31a}\\
& a a^{+}-q a^{+} a=q^{-N} \tag{31b}
\end{align*}
$$

such that there are correspondences

$$
\begin{equation*}
Z \rightarrow a^{+} \quad \partial_{q} \rightarrow a \quad Z \partial \rightarrow N \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.X_{n}(Z) \rightarrow\left(a^{+}\right)^{n} \mid 0\right) \sqrt{[n]!} \tag{33}
\end{equation*}
$$

where $\mid 0$) is the q-boson vacuum state. Obviously

$$
\begin{equation*}
\left.\psi_{j j}(Z)=1 \rightarrow \mid 0\right) \tag{34}
\end{equation*}
$$

Then we can rewrite the operators of (20), (29) as

$$
\begin{align*}
& \mathscr{J}_{+} \rightarrow \mathscr{J}_{+}^{(\mathrm{D})}=a \tag{35a}\\
& \mathscr{J}_{-} \rightarrow \mathscr{J}_{-}^{(\mathrm{D})}=a^{+}[2 j-N] \tag{35b}\\
& \mathscr{J}_{0} \rightarrow \mathscr{J}_{0}^{(\mathrm{D})}=j-N \tag{35c}
\end{align*}
$$

and

$$
\begin{align*}
& \overline{\mathscr{J}}_{+} \rightarrow \mathscr{J}_{+}^{(\mathrm{HP})}=\sqrt{[2 j-N]} a \tag{36a}\\
& \overline{\mathscr{J}}_{-} \rightarrow \mathscr{J}_{-}^{(\mathrm{HP})}=a^{+} \sqrt{[2 j-\bar{N}]} \tag{36b}\\
& \overline{\mathscr{J}}_{0} \rightarrow \mathscr{f}_{0}^{(\mathrm{HP})}=j-N \tag{36c}
\end{align*}
$$

where $\mathscr{f}_{0}^{(\mathrm{D})}, \mathscr{f}_{ \pm}^{(\mathrm{D})}$ and $\mathscr{f}_{0}^{(\mathrm{HP})}, \mathscr{f}_{ \pm}^{(\mathrm{HP})}$ are the q-Dyson and q-Holstein-Primakoff realizations of the $\mathrm{U}_{q}(\mathrm{su}(2))$ algebras, respectively.

This work was supported by the National Natural Science Foundation of China. The author would like to thank Professor Ye Jia-Shen for helpful discussions and the referee for drawing his attention to reference [13].

Note added. The q-analogue of Bargmann space has been treated in great detail by Bracken et al [13].

References

[1] Drinfeld V G 1986 Proc. ICM (Berkeley, CA: MSR1) p 798
[2] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L861
[3] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[4] Sun C P and Fun H C 1989 J. Phys. A: Math. Gen. 22 L983
[5] Ruegg H R 1990 J. Math. Phys. 311085
[6] Dobaczewski J 1981 Nucl. Phys. A 369 213, 237; 1982 Nucl. Phys. A 3801
[7] Rowe D J 1985 Rep. Prog. Phys. 481419
[8] Hecht K T 1987 Lecture Notes in Physics 209 (Berlin: Springer)
[9] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 231415
[10] Chaichian M, Ellinas D and Kulish P P 1990 Phys. Rev. Lett. 65980
[11] Katriel J and Solomon AI 1991 J. Phys. A: Math. Gen. 24 L1209
[12] Gray R W and Nelson C A 1990 J. Phys. A: Math. Gen. 23 L985
[13] Bracken A J, McAnaly D S, Zhang R B and Gould M D 1991 J. Phys. A: Math. Gen. 241379

